En citología, cromosoma es el nombre que recibe una diminuta estructura filiforme formada por ácidos nucleicos y proteínas presente en todas las células vegetales y animales. El cromosoma contiene el ácido nucleico (ADN), que se divide en pequeñas unidades llamadas genes. Éstos determinan las características hereditarias de la célula u organismo. Las células de los individuos de una especie determinada suelen tener un número fijo de cromosomas, que en las plantas y animales superiores se presentan por pares.
El ser humano tiene 23 pares de cromosomas. En estos organismos, las células reproductoras tienen por lo general sólo la mitad de los cromosomas presentes en las corporales o somáticas. Durante la fecundación, el espermatozoide y el óvulo (células reproductoras o gametos) se unen y reconstruyen en el nuevo organismo la disposición por pares de los cromosomas; la mitad de estos cromosomas procede de un parental, y la otra mitad del otro.
Los cromosomas se duplican al comienzo de la división celular y, una vez completada, recuperan el estado original.
Debido a esta duplicación, que aparece con la forma de una X, se llama cromosoma a esta cadena duplicada de ADN, que aparece constituida por dos partes idénticas, denominadascromátidas, que se unen a través de una zona de menor densidad, y un centro llamadocentrómero. Los elementos separados por el centrómero hacia arriba y hacia abajo de cada cromátida reciben el nombre de brazos (corresponden a la mitad de una cromátida). Es en la metafase cuando las cromátidas están duplicadas (cromátidas hermanas) y unidas a nivel del centrómero. Luego, durante la anafase sólo presenta un juego de cromátidas. El tamaño de los cromosomas puede oscilar entre los 0,2 y 5 µm (micrómetros) de longitud con un diámetro entre 0,2 y 2 µm. La longitud normal de los cromosomas de los mamíferos varía entre los 4 a 6 µm. Un micrómetro equivale a la milésima parte de un milímetro. (Un milímetro dividido en mil partes) Normalmente existen 46 cromosomas en cada célula humana. Cada cromosoma contiene miles de trozos de información o instrucciones. Estas instrucciones son llamadas "genes". Por lo tanto, los cromosomas son paquetes de genes los cuales dirigen el desarrollo del cuerpo. Por ejemplo, existen genes que dicen si una persona va a tener ojos azules o cafés, cabello café o rubio. Un gen también codifica o lleva la información de un producto específico, como por ejemplo, una proteína. Dicha proteína estará involucrada en algún proceso específico que determinará un rasgo o característica particular. Toda la información que el cuerpo necesita para trabajar proviene de los cromosomas. Los cromosomas contienen los planos para el crecimiento y el desarrollo. Dispersos entre los 23 pares de cromosomas existen cerca de 30.000 genes. Incluso una parte muy pequeña de un cromosoma puede contener diferentes genes.
Cadena trófica (del griego throphe: alimentación) es el proceso de transferencia de energía alimenticia a través de una serie de organismos, en el que cada uno se alimenta del precedente y es alimento del siguiente.
Cada cadena se inicia con un vegetal, productor u organismo autótrofo (autotropho del griego autós =sí mismo y trophe=alimentación) o sea un organismo que "fabrica su propio alimento" sintetizando sustancias orgánicas a partir de sustancias inorgánicas que toma del aire y del suelo, y energía solar (fotosíntesis).
Los demás integrantes de la cadena se denominan consumidores. Aquel que se alimenta del productor, será el consumidor primario, el que se alimenta de este último será el consumidor secundario y así sucesivamente. Son consumidores primarios, los herbívoros. Son consumidores secundarios, terciarios, etc. los carnívoros.
Existe un último nivel en la cadena alimentaria que corresponde a los descomponedores. Estos actúan sobre los organismos muertos, degradan la materia orgánica y la transforman nuevamente en materia inorgánica devolviéndola al suelo (nitratos, nitritos, agua) y a la atmósfera (dióxido de carbono).
Cada nivel de la cadena se denomina eslabón.
En una cadena trófica, cada eslabón obtiene la energía necesaria para la vida del nivel inmediato anterior; y el productor la obtiene del sol.. De modo que la energía fluye a través de la cadena.
En este flujo de energía se produce una gran pérdida de la misma en cada traspaso de un eslabón a otro, por lo cual un nivel de consumidor alto (ej: consumidor 3ario) recibirá menos energía que uno bajo (ej: consumidor 1ario).
Dada esta condición de flujo de energía, la longitud de una cadena no va más allá de consumidor terciario o cuaternario.
Una cadena alimentaria en sentido estricto, tiene varias desventajas en caso de desaparecer un eslabón:
a)Desaparecerán con él todos los eslabones siguientes pues se quedarán sin alimento.
b)Se superpoblará el nivel inmediato anterior, pues ya no existe su predador.
c)Se desequilibrarán los niveles más bajos como consecuencia de lo mencionado en a) y b).
d)Por tales motivos las redes alimentarias o tramas tróficas son más ventajosas que las cadenas aisladas.
La Fotosíntesis es un proceso en virtud del cual los organismos con clorofila, como las plantas verdes, las algas y algunas bacterias, capturan energía en forma de luz y la transforman en energía química.
Prácticamente toda la energía que consume la vida de la biosfera terrestre —la zona del planeta en la cual hay vida— procede de la fotosíntesis.
La fotosíntesis se realiza en dos etapas: una serie de reacciones que dependen de la luz y son independientes de la temperatura, y otra serie que dependen de la temperatura y son independientes de la luz.
La velocidad de la primera etapa, llamada reacción lumínica, aumenta con la intensidad luminosa (dentro de ciertos límites), pero no con la temperatura. En la segunda etapa, llamada reacción en la oscuridad, la velocidad aumenta con la temperatura (dentro de ciertos límites), pero no con la intensidad luminosa.
Fase primaria o lumínica
La fase lumínica de la fotosíntesis es una etapa en la que se producen reacciones químicas con la ayuda de la luz solar y la clorofila.
La clorofila es un compuesto orgánico, formado por moléculas que contienen átomos de carbono, de hidrógeno, oxígeno, nitrógeno y magnesio.
Estos elementos se organizan en una estructura especial: el átomo de magnesio se sitúa en el centro rodeado de todos los demás átomos.
Molécula de clorofila
La clorofila capta la luz solar, y provoca el rompimiento de la molécula de agua (H2O), separando el hidrógeno (H) del oxígeno (O); es decir, el enlace químico que mantiene unidos al hidrógeno y al oxígeno de la molécula de agua, se rompe por efecto de la luz.
El proceso genera oxígeno gaseoso que se libera al ambiente, y la energía no utilizada es almacenada en moléculas especiales llamadas ATP. En consecuencia, cada vez que la luz esté presente, se desencadenará en la planta el proceso descrito.
Fase secundaria u oscura
La fase oscura de la fotosíntesis es una etapa en la que no se necesita la luz, aunque se realiza en su presencia. Ocurre en los cloroplastos y depende directamente de los productos obtenidos en la fase lumínica.
En esta fase, el hidrógeno formado en la fase anterior se suma al dióxido de carbono gaseoso (CO2) presente en el aire, dando como resultado la producción de compuestos orgánicos, principalmente carbohidratos; es decir, compuestos cuyas moléculas contienen carbono, hidrógeno y oxígeno.
Dicho proceso se desencadena gracias a una energía almacenada en moléculas de ATP que da como resultado el carbohidrato llamado glucosa (C6HI2O6), un tipo de compuesto similar al azúcar.
Después de la formación de glucosa, ocurre una secuencia de otras reacciones químicas que dan lugar a la formación de almidón y varios carbohidratos más.
A partir de estos productos, la planta elabora lípidos y proteínas necesarios para la formación del tejido vegetal, lo que produce el crecimiento.
Cada uno de estos procesos no requiere de la participación de luz ni de la clorofila, y por ende se realiza durante el día y la noche. Por ejemplo, el almidón producido se mezcla con el agua presente en las hojas y es absorbido por unos tubitos minúsculos que existen en el tallo de la planta y, a través de éstos, es transportado hasta la raíz donde se almacena. Este almidón es utilizado para fabricar celulosa, el principal constituyente de la madera.
El resultado final, y el más trascendental, es que la planta guarda en su interior la energía que proviene del Sol. Esta condición es la razón de la existencia del mundo vegetal porque constituye la base energética de los demás seres vivientes.
Por una parte, las plantas son para los animales fuente de alimentación, y, por otra, mantienen constante la cantidad necesaria de oxígeno en la atmósfera permitiendo que los seres vivos puedan obtener así la energía necesaria sus actividades.
Si los químicos lograran reproducir la fotosíntesis por medios artificiales, se abriría la posibilidad de capturar energía solar a gran escala. En la actualidad se trabaja mucho en este tipo de investigación. Todavía no se ha logrado sintetizar una molécula artificial que se mantenga polarizada durante un tiempo suficiente para reaccionar de forma útil con otras moléculas, pero las perspectivas son prometedoras.
Algas
Dibujo bacterias
Bacterias al microscopio
Hojas verdes
mportancia biológica de la fotosíntesis
La fotosíntesis es seguramente el proceso bioquímico más importante de la Biosfera por varios motivos:
1. La síntesis de materia orgánica a partir de la inorgánica se realiza fundamentalmente mediante la fotosíntesis; luego irá pasando de unos seres vivos a otros mediante las cadenas tróficas, para ser transformada en materia propia por los diferentes seres vivos.
2. Produce la transformación de la energía luminosa en energía química, necesaria y utilizada por los seres vivos
3. En la fotosíntesis se libera oxígeno, que será utilizado en la respiración aerobia como oxidante.
4. La fotosíntesis fue causante del cambio producido en la atmósfera primitiva, que era anaerobia y reductora.
5. De la fotosíntesis depende también la energía almacenada en combustibles fósiles como carbón, petróleo y gas natural.
6. El equilibrio necesario entre seres autótrofos y heterótrofos no sería posible sin la fotosíntesis.
Se puede concluir que la diversidad de la vida existente en la Tierra depende principalmente de la fotosíntesis.
Los seres vivos están formados por mínimas unidades llamadas células. Todas las funciones químicas y fisiológicas básicas, por ejemplo, la reparación, el crecimiento, el movimiento, la inmunidad, la comunicación, y la digestión, ocurren al interior de la célula.
Los hombres de ciencia, solo pudieron realizar investigaciones en relación a ellas después del descubrimiento del microscopio. (Ver Teoría celular)
Clasificación de los seres vivos
Según el número de células que los forman, los seres vivos se pueden clasificar en unicelulares y pluricelulares.
Unicelulares: Son todos aquellos organismos formados por una sola célula. En este grupo, los más representativos son los protozoos -ameba, paramecio, euglena-, que sólo pueden observarse con un microscopio.
Pluricelulares: Son todos aquellos organismos formados por más de una célula. Existe gran variedad de ellos, tales como los vertebrados (aves, mamíferos, anfibios, peces, reptiles) y los invertebrados (arácnidos, insectos, moluscos, etc.).
En los vegetales, podemos tomar como ejemplos a las plantas con flores (angiosperma), sin flores típicas (gimnospermas), musgos, hongos, etcétera.
Modelo de célula
Los organismos pluricelulares presentan una determinada organización de sus células, en distintos niveles, que son:
Célula: mínima unidad que forma parte de un ser vivo. Tejido: conjunto de células que tienen características y funciones similares y con un mismo origen. Órgano: conjunto de tejidos unidos y coordinados para cumplir una función específica. Por ejemplo: pulmón, corazón, estómago, etcétera. En el caso de los vegetales, son considerados órganos: la raíz, las semillas, las hojas, las flor, etcétera. Sistemas: resultado de la unión de varios órganos, los cuales funcionan de una forma coordinada para desempeñar un rol determinado. Por ejemplo: se habla de Sistema Digestivo, Renal, Circulatorio, Nervioso, Reproductor, etcétera. Organismo: es un ser vivo formado por un conjunto de sistemas, que trabajan armónicamente. Existen seres vivos que no tienen órganos o sistemas estructurados, pero poseen una organización sencilla, esto les permite un buen desarrollo. Si un órgano se daña o altera provoca una desorganización del ser vivo.
Las tres partes básicas de toda célula son: la membrana plasmática, el citoplasma, y el núcleo.
Membrana Celular o plasmática
La membrana celular o plasmática
La membrana celular se caracteriza porque:
Rodea a toda la célula y mantiene su integridad.
Está compuesta por dos sustancias orgánicas: proteínas y lípidos, específicamente fosfolípidos.
Los fosfolípidos están dispuestos formando una doble capa (bicapa lipídica), donde se encuentran sumergidas las proteínas.
Es una estructura dinámica.
Es una membrana semipermeable o selectiva, esto indica que sólo pasan algunas sustancias (moléculas) a través de ella.
Tiene la capacidad de modificarse y en este proceso forma poros y canales
Funciones de la membrana celular
Regula el paso de sustancias hacia el interior de la célula y viceversa. Esto quiere decir que incorpora nutrientes al interior de la célula y permite el paso de desechos hacia el exterior.
Como estructura dinámica, permite el paso de ciertas sustancias e impide el paso de otras.
Aísla y protege a la célula del ambiente externo
Ver: PSU: Biología, Pregunta 03_2005
El citoplasma
Se caracteriza porque:
Es una estructura celular que se ubica entre la membrana celular y el núcleo.
Contiene un conjunto de estructuras muy pequeñas, llamadas organelos celulares.
Está constituido por una sustancia semilíquida.
Químicamente, está formado por agua, y en él se encuentran en suspensión, o disueltas, distintas sustancias como proteínas, enzimas, líquidos, hidratos de carbono, sales minerales, etcétera.
Funciones del citoplasma
Nutritiva. Al citoplasma se incorporan una serie de sustancias, que van a ser transformadas o desintegradas para liberar energía.
De almacenamiento. En el citoplasma se almacenan ciertas sustancias de reserva.
Estructural. El citoplasma es el soporte que da forma a la célula y es la base de sus movimientos.
Los organelos celulares
Son pequeñas estructuras intracelulares, delimitadas por una o dos membranas. Cada una de ellas realiza una determinada función, permitiendo la vida de la célula. Por la función que cumple cada organelo, la gran mayoría se encuentra en todas las células, a excepción de algunos, que solo están presentes en ciertas células de determinados organismos.
Mitocondria
Mitocondrias: en los organismos heterótrofos, las mitocondrias son fundamentales para la obtención de la energía. Son organelos de forma elíptica, están delimitados por dos membranas, una externa y lisa, y otra interna, que presenta pliegues, capaces de aumentar la superficie en el interior de la mitocondria. Poseen su propio material genético llamado DNA mitocondrial.
La función de la mitocondria es producir la mayor cantidad de energía útil para el trabajo que debe realizar la célula. Con ese fin, utiliza la energía contenida en ciertas moléculas. Por ejemplo, tenemos el caso de la glucosa. Esta molécula se transforma primero en el citoplasma y posteriormente en el interior de la mitocondria, hasta CO2 (anhídrido carbónico), H2O (agua) y energía. Esta energía no es ocupada directamente, sino que se almacena en una molécula especial llamada ATP (adenosin trifosfato).
El ATP se difunde hacia el citoplasma para ser ocupado en las distintas reacciones en las cuales se requiere de energía. Al liberar la energía, el ATP queda como ADP (adenosin difosfato), el cual vuelve a la mitocondria para transformarse nuevamente en ATP.
La formación del ATP puede representarse mediante la siguiente reacción química:
Energía
ADP + P + ----------------> ATP (P = fosfato)
Esta reacción permite almacenar la energía.
En tanto, el proceso inverso, de liberación de energía, es:
ATP ----------------> ADP + P + Energía
Cloroplasto
Cloroplastos: son organelos que se encuentran sólo en células que están formando a las plantas y algas verdes. Son más grandes que las mitocondrias y están rodeados por dos membranas una externa y otra interna.
Poseen su propio material genético llamado DNA plastidial, y en su interior se encuentra la clorofila (pigmento verde) y otros pigmentos. Los cloroplastos son los organelos fundamentales en los organismos autótrofos, es decir, aquellos capaces de fabricar su propio alimento.
En ellos ocurre la fotosíntesis. Para que esta se realice, se requiere de CO2, agua y energía solar, sustancias con las cuales la planta fabrica glucosa. Esta molécula le sirve de alimento al vegetal y a otros seres vivos.
Así se forma, también, el oxígeno que pasa hacia la atmósfera.
Ribosomas: son pequeños corpúsculos, que se encuentran libres en el citoplasma, como gránulos independientes, o formando grupos, constituyendo polirribosomas. También, pueden estar asociados a la pared externa de otro organelo celular, llamado retículo endoplasmático rugoso. En los ribosomas tiene lugar la síntesis de proteínas, cuyo fin es construir el cuerpo celular, regular ciertas actividades metabólicas, etcétera.
Retículo endoplasmático
Retículo endoplasmático: corresponde a un conjunto de canales y sacos aplanados, que ocupan una gran porción del citoplasma.
Están formados por membranas muy delgadas y comunican el núcleo celular con el medio extracelular -o medio externo-.
Existen dos tipos de retículo. Uno es el llamado rugoso, en la superficie externa de su membrana van adosados ribosomas.
Su función consiste en transportar proteínas que fueron sintetizadas por los ribosomas y, además, algunas proteínas que forman parte de ciertas membranas de distintas estructuras de la célula.
El otro tipo es el liso. Carece de ribosomas y está asociado a ciertas reacciones relacionadas con la producción de sustancias de naturaleza lipídica -lípidos o grasas-.
Aparato de Golgi
Aparato de Golgi: está delimitado por una sola membrana y formado por una serie de sacos membranosos aplanados y apilados uno sobre otro. Alrededor de estos sacos, hay una serie de bolsitas membranosas llamadas vesículas. El aparato de Golgi existe en las células vegetales -dictiosoma- y animales. Actúa muy estrechamente con el retículo endoplasmático rugoso. Es el encargado de distribuir las proteínas fabricadas en este último, ya sea dentro o fuera de la célula. Además, adiciona cierta señal química a las proteínas, que determina el destino final de éstas. Lisosomas: es un organelo pequeño, de forma esférica y rodeado por una sola membrana. En su interior, contiene ciertas sustancias químicas llamadas enzimas -que permiten sintetizar o degradar otras sustancias-. Los lisosomas están directamente asociados a los procesos de digestión intracelular. Esto significa que, gracias a las enzimas que están en el interior, se puede degradar proteínas, lípidos, hidratos de carbono, etcétera. En condiciones normales, los lisosomas degradan membranas y organelos, que han dejado de funcionar en la célula. Centríolos: están presentes en las células animales. En la gran mayoría de las células vegetales no existen. Conformados por un grupo de nueve túbulos ordenados en círculos, participan directamente en el proceso de división o reproducción celular, llamado mitosis. Vacuolas: son vesículas o bolsas membranosas, presentes en la célula animal y vegetal; en ésta última son más numerosas y más grandes. Su función es la de almacenar -temporalmente- alimentos, agua, desechos y otros materiales.
El núcleo
Es fundamental aclarar que existen células que tienen un núcleo bien definido y separado del citoplasma, a través de una membrana llamada membrana doble nuclear o carioteca. A estas células con núcleo verdadero, se les denomina células eucariontes.
Hay otras células -en las bacterias y en ciertas algas unicelulares- que no tienen un núcleo definido ni determinado por una membrana. Esto indica que los componentes nucleares están mezclados con el citoplasma. Este tipo de células se denominan procariontes.
En la célula eucarionte el núcleo se caracteriza por:
Ser voluminoso.
Ocupar una posición central en la célula.
Estar delimitado por la membrana carioteca. Ésta presenta poros definidos, que permiten el intercambio de moléculas entre el núcleo y el citoplasma.
En el interior del núcleo se pueden encontrar:
Núcleo plasma o jugo nuclear.
Nucléolo: cuerpo esférico, formado por proteínas, ácido desoxi-ribonucleico (ADN) y ácido ribonucleico (ARN), ambos compuestos orgánicos.
El nucléolo tiene la información para fabricar las proteínas.
Material genético: está organizado en verdaderas hebras llamadas cromatinas, formadas por ADN. Cuando la célula se reproduce, la cromatina se condensa y forma unas estructuras llamadas cromosomas, donde está contenida toda la información genética propia de cada ser vivo.
La función del núcleo es dirigir la actividad celular, es decir, regula el funcionamiento de todos los organelos celulares.
Aprendizajes esperados luego de desarrollar y estudiar la célula:
Los alumnos y alumnas saben y entienden: • que las células son las unidades estructurales de los seres vivos y su actividad es la base de todas las funciones biológicas; • las implicaciones de la teoría celular en su contexto histórico y biológico (explicación de los seres vivos); • la importancia de la microscopía en el conocimiento de los sistemas vivos, valorando su papel en el descubrimiento de las células y sus estructuras internas; • que algunos organismos son células únicas mientras otros son multicelulares; • que las células eucariontes organizan el material genético en el núcleo y las funciones intracelulares en distintos compartimentos membranosos; • las relaciones entre estructura y función de la membrana plasmática y los organelos intracelulares de células animales y vegetales; • la simplicidad de los organismos procariontes en comparación con los eucariontes.